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Joint  Dif fus ion on the Line 

Domokos  Szfisz 
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For a one-dimensional system of particles with elastic collisions the trajectories 
of distinct particles are considered in the diffusion limit. If the initial distance 
of two particles increases in an appropriate way, then in the diffusion limit the 
joint distribution of the trajectories converges to a limit. 

KEY WORDS: Infinite-particle system; collision; diffusion limit; joint dis- 
tribution of trajectories. 

1. I N T R O D U C T I O N  

Dynamica l  theories explain Brownian mot ion  as the mot ion  of  a particle 
among  a large number  of  interacting dynamic  particles. (6'v) However,  it is 
quite difficult to carry out such a p rogram in practice, and this has been done 
for the one-dimensional  case only. (5) The mot ion  of  impenetrable particles on 
R 1 is order-invariant ,  and consequently the linear model  has certain peculi- 
arities which are expected not  to go over into the multidimensional case. It 
is expected, for example, that  nearby particles move independently of  each 
other,  a s tatement that  can only be true in R a (d ~> 2) and is certainly not  
true in R 1. In the present paper,  we consider an infinite system of  particles 
o n  R 1 interacting th rough  elastic collisions. We answer the questions:  H o w  
distant should two particles be in order to have independent  trajectories 
(in an appropr ia te  limit !)? And,  which is more  interesting : When do we get a 
nontrivial joint  limit behavior  for the trajectories of  different particles ? 

Section 2 describes the mathematical  model.  Section 3 formulates the 
results, which are proven in Section 4 and Appendices A and B. Section 5 
contains comments  and remaining problems. 

2. D E S C R I P T I O N  OF THE M O D E L  

Our  model  can be described by a sequence {(qi, Pi)}, - ~  < i < ~ ,  o f  
r andom vectors, where (a) q~ ~< q~+l and the sequence {qi}, - ov < i < ~ ,  is 
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locally finite; (b)Pl e Ri. The particles are supposed to have identical, unit 
masses and qi and Pi denote the initial position and momentum of the particle 
with label i. The particles move uniformly until they meet and then they 
change momentum and go on uniformly with new momentum, and so on. By 
an existence and unicity theorem of Harris, (3) the motion will be uniquely 
defined with probability 1 if we make the following assumptions : 

(i) limt~l~on-lqn = fl with probability 1, where # is a positive random 
variable. 

(ii) The sequences {q~}_os and {p~}_os are independent of each other 
and {pi}_~oo is a sequence of i.i.d.r.v. 's with Epi = O, - o o  < i < oo. 

Let us denote by y~(t) the path of the ith particle in the colliding 
system of particles [note that for every t >~ O, y~(t) ~ y~+ 1(0]. 

In Ref. 5 conditions are given ensuring the existence of a limit distribu- 
tion in C[0, oo] for the rescaled trajectory p i ,A( t )=  A - 1 / Z [ y i ( A t  ) - yi(0)], 

- oo < i < oo. With no loss of generality we can assume that at time 0 we have 
two tagged particles: one (with label 0) at the origin and the other one 
(with some label il) at the point f ( A )  > 0. We are interested in the joint 
distribution of Po,A(') and P~,,A(') and, for simplicity, we denote q~A(t)= 
po,a(t) and ~ka(t ) = Pi,,A(t)- 

Our results will easily extend to the case of an infinite subsystem of 
particles. In this case we insert an infinite number of tagged particles at each 
point k f ( A ) ,  - oo < k < ~ .  If, in the natural order, they get the labels i k 
(q0 = 0), then denote q~k)(t) = plk,A(t). 

Before going over to mathematical results, let us turn to physics to 
conjecture what these results should be like. Suppose the initial density is 
6 = /~ -  1 and denote M = EIp~I. We will denote the dependence of the model 
on 6 and M by upper indices. Since, in our model, the impulse propagates 
linearly, it is reasonable to expect that in the (6, p) model the inter- 
dependence of the paths of the zeroth and i~th particles will be nontrivial 
if i 1 ~ a M .  In this case, we can write 

,~,M ,~M 6 M  (Yo (t), Ya~/(t) - y,~ (0)) 

(yao, U(t), ,5 M Ya~i (t) - a M 6 )  

= ( M / f ) l / 2 ( f M ) -  1/2(y1,1 (6Mr) ,  y l ~ ( 6 M t )  - a M  ) 

If 6-+ ~ and M/6--- ,  1, then we can expect that, keeping the density 3 
and the mean impulse M fixed, we get a nontrivial joint behavior of ~oA(t ) 
and O~(t) (A = 6 M ! )  by choosing il -- aA.  
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3. T H E  J O I N T  PATH OF S E V E R A L  P A R T I C L E S  

Denote  

card{i:  q i e ( O , x ) }  if  x > 0  
v ( x ) = ( _ c a r d { i :  q i s [ x , O ] }  if  x ~ < 0  

and int roduce the processes S ~ ( u ) =  A-1/z[V(Au)  - # - l A u ] ,  where A > 1, 
u e R. Suppose  that  : 

1. There  exists a process S(u), - ~ < u < 0% with s ta t ionary  increments  
and with trajectories in C ( - ~ ,  oo) such that  SA(u) converges  to S(u), as 
A --* oo, in the sense of  weak convergence in D( - ce, oo). 

2. supu[(1 + lul)-llSA(u)l] is stochastically bounded  in A. 
3. The  increments  of  S satisfy the mixing proper ty ,  i.e., for  any pair  o f  

intervals (e', fl') and  (c(', [3"), 

P(S(fl ')  - S(~') < x',  S(f f '  + a) - S(ct" + a) < x") 

P(S([3')  - s ( ~ ' )  < x ' ) e ( s ( ~ " )  - s ( ~ " )  < x" )  

i f a ~  oo. 

2 - T h e o r e m .  I f  A - a f ( A  ) --* a (0 <~ a <~ oo) as A --~ oo, then the r a n d o m  
elements ((PA('), g'A(')), converge to a r a n d o m  element (~0(.), 0 ( ' ) )  in the 
sense of  the weak convergence on C[0 ,  oo) x C[0 ,  oo). Moreover ,  i f a  = 0% 
then the processes qo and 0 are independent ,  and i f a  = 0, then P(q)(t) = O(t), 
t > ~ 0 ) = l .  

It  will not  cause addi t ional  difficulties to w o v e  the fol lowing:  

oo-Theorem.  I f  A - l f ( A ) - ~  a, 0 ~ a ~ oo, as A--~ ~ ,  then the se- 
quence of  processes { q ~ ( - ) , -  oo < k < ~ }  converges to the sequence 
{q0(*)(. ), - oo < k < oo}, i.e., for  any  k l  ..... kN (N >1 1) the r a n d o m  elements 
(~0~k,)(.),..., q)~kN)(. )) converge weakly to (qCk,)(.) ..... (p(k,,)(.)) in x N= 1 C[0, ~ ) .  
Moreover ,  if a = o% then the processes ~o(*)(.), - oo < k < 0% are inde- 
pendent ,  and if a = 0, then 

P(qCk')(t) = ""=  q~(kN)(t), t >1 O) = 1 

We remark  that  Theo rem 2 of  Ref.  5 can be unders tood  as a 1- 
Theorem.  We also r emark  that  condi t ion 3 will only be used in the p r o o f  
of  the independence stated in case a = oo. 

One  would expect the last sentence in the theorems to be comple ted  
by the s ta tement  " a n d  if 0 < a < 0% then neither is the case."  F o r  the 
t ime being, however ,  the au thor  does not  see a way to prove  this wi thout  
in t roducing long calculations.  
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4. P R O O F S  

We will only prove the 2-Theorem, since the ~-Theorem is proven 
analogously. With no loss of generality we can assume/z = 1. Consider 

P((PA(tt) < Wt, 1 <<. l <~ e; OA(Sj) < Uj, 1 <~j <<.f) (4.1) 

Denote 

and 

z~(t, w) = A-x/21 ~ )~{Pi >/(At) -1(  A1;2w - ql)} 
LA~<0 

- ,>oZ z{p~ < ( A t ) - I ( A  ~/~w - q,)}] 

/ 
rA(s, u) = A 1/2[ y~ Z{Pi/> (as) -1[  A1/2u +U(A) - qi]} 

\i<~il 

-- ~ •{Pi < (As)-I[A1/2u + f ( A ) -  qi]} / 
i>ii / 

It is easy to see (cf. Ref. 3) that the events {~0A(t ) < W} and {zA(t, w) < 0} are 
identical and that the events {~A(S) < U} and {rA(S, U) < 0} are identical. 
Thus, the limit of the probability (4.1) can be calculated as the limit of the 
probability 

P(ZA(ti, Wl) < O, 1 <. l <<. e; rA(Sj, uj) < O, 1 <~j <~f) 

By using the independence of {q.}-~o~ and { p . } ~ ,  we can calculate the 
joint limit distribution of the random variables Z A(t l, W,), 1 ~ l <<. e, and 
rA(Sj, U j), 1 <.j <~f, by conditioning with respect to the a-algebra ~c generated 
by the random variables q., n E Z. Indeed 

P(~OA(tl) < wt, I <~ l <~ e; ~]A(Sj) < Uj, I <~j <~f) 

=EP(zA( f i ,Wl )<O,  l<~l<~e;  rA(Sj,Uj)<O, l<<.j<~ft~Y) 

= EP(ZA(t l, w~) - E(ZA(tl, wl)lYf) < --E(ZA(fi, Wt)lf) ,  1 <~ l <~ e; 

ra(Sj, uj) -- E(rA(S ~, Uj)[f) < --E(rA(S j, ui)[f),  1 <~j ~<f ] f )  (4.2) 

Because of the independence of the sequences {q,} and { p,}, we can apply the 
multidimensional CLT to the conditional distribution (with respect to :Y) of 
the vector 

(Za(fi, wt) -- E(zA(tt, wt)[Y'), 1 ~< l ~< e; r A(S i, Uj) 

-- E(rA(sj, Uj)[Y'), 1 ~<j ~<f) (4.3) 
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The almost sure limit o f  this conditional distribution is (e + f ) - d i m e n s i o n a l  
normal  with mean vector 0 and a covariance matrix Z, which will be 
calculated in Appendix A. 

By simple t ransformat ions  

E(zA(t, w)lSf) = - - f  SA( - -p t  + A 1/2w)F(dp) - w (4.4) 

and similarly 

E(rA(s, U)IY') 

= - l I s A ( A - I f ( A )  - p s  + A-1/Zu)  - -  S A ( A - l f ( A ) ) J F ( d p )  - u (4.5) 

Suppose a < oo. Analogously  as in statement (c) o f  Lemma 2 in Ref. 5, 
it can be shown that  the condit ional  expectation vector 

(E(ZA(tl, w~)]s 1 4 l ~ e; E(rA(sj, U~)IX), 1 <~j < . f ) )  

tends in distribution to the vector (h 1 ..... h z, k I ..... k f ) ,  where 

h~ = - f s ( - q f i ) F ( d q )  - w~, 1 <<. l <~ e 

kj  = - f [ S ( a  - qs~) - S(a)]F(dq) - uj, 1 <<,j <~f 

Consequently,  by (4.2), the joint distribution (4.1) tends to 

E ~ z ( f S ( - q t 3 F ( d q ) + w l ,  l < ~ l < ~ e ;  

+ ,46,  

where qb denotes the normal  distribution with mean vector 0 and covariance 
matrix Z. This statement involves the weak convergence asserted in the 
2-Theorem since the tightness part  follows f rom the 1-Theorem. 

I r a  = 0, then choose e = J ;  t I = s~, 1 ~ l ~< e, arbitrarily. It is sufficient 
to show that 

P(~o(t~) = O(fi), 1 <~ l <~ e) = 1 

Set s = (a,j), .< ~o -< 2 ~- Suppose we have proven ~ = (Tl,j + e = (7t + e , j  = (71 + e , j  + e 

for any 1 ~ l , j  <~ e. Then the characteristic function E exp[y~= 1 (cq~ + fltrh)] 
of  the r andom vector (3, ..... {e, t/~ ..... qe) with distribution q5 x is o f  the form 

exp - ~  atj(o h + otj)(fi t + fij) 
l , j =  1 
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This fact plus the unicity of the correspondence between distributions and 
characteristic functions give that 

P ( r  , . . . ,  ~e)  = (~1 . . . . .  ~e ) )  = 1 

L e m m a  4.1. Let (~1,..., ~-e, r/z .... , r/e) = (~, ~/) a 2e-dimensional ran- 
dom vector (~, g s Re). Then P(~ = ~/) = 1 if and only if, for any w, u e W, 

P(~ < w, t /<  u) = P(~ < min(w, u)) 

(the minimum on the rhs is taken componentwise). 

The lemma will be proven in Appendix B. The lemma implies that 
(I)x(w, u), (w, u ~ W), is of the form ~x0(min(w, u)), where Z o = (q t , j ) l  <<.t,j<~e. 

Consequently, by denoting ~ = (~1 ,-.., (e) for ~t = ~ S ( - q f i ) F ( d q ) ,  we can 
conclude that the limit distribution (4.6) of (4.1) is of the form 

g@zo(min(~ + w, ~ + u)) = Eqbxo(r + min(w, u)) 

which, again by Lemma 4.1, gives the desired statement. 
Let now a = oo. From the calculations of AplSendix A it is easy to see 

that, in this case, all the cross-covariances in Z vanish. Thus, with prob- 
ability 1, the limit distribution of (4.3) is (e + f)-dimensional normal, where 
the first e components and the remaining f components are independent. 
By the continuity of the normal law, the difference of the probability on 
the rhs of (4.2) and of 

~z( - -E(z~( f i ,w l ) [~) ,  1 ~< l-%< e; --E(rA(S~,Uj)ISf), 1 ~ j  ~<f) (4.7) 

tends to zero with probability one if A ---, ~ ,  where the argument of q~x can 
be written as in (4.4) and (4.5). Now condition 3 implies that the first e 
arguments in (4.7) become independent of the remaining f arguments as 
A---, oo, and, consequently, our previous observation on 2 implies the 
stated independence. 

5. C O M M E N T S  

(a) Similar results hold if instead of inserting particles at points kf(A) ,  
- oo < k < oo, the particles with indices i k = k f (A) ,  - oo < k < oo, are 
tagged and their joint path observed. 

(b) Like the 1-Theorem, our 2-Theorem and oo-Theorem allow a variety 
of generalizations, namely (1) with interdependence among the initial 
momenta;  (2) with nonuniform motion between collisions; (3) for hard rods, 
i.e., for particles with finite size. The firs t possibility deserves attention both 
from physical and aesthetic point of views. Interdependence is physically more 
natural and, aesthetically, a theorem with time-invariant conditions is 
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superior. But, according to a result of Kallenberg, (4) our assumptions for the 
momenta are time-invariant if and only if the positions form a mixed 
Poisson process. 

(c) In the generality of our assumptions, of course, no exact calculations 
are possible. One hopes, however, that, under more restrictions, more exact, 
e.g., not limit-type, results can also be obtained. For example, time-displaced 
conditional distributions have been calculated by Aizenman et al. ~  for an 
equilibrium system of hard rods with different diameters (on R1). 

(d) The hypothesis that in R a, d >/2, nearby particles move inde- 
pendently could be strengthened by proving it is true in the following two- 
dimensional model: initially, particles with unit masses are situated at each 
"black" point of the square lattice Z 2 [a point (nx, n2)~ Z 2 is black if 
n~ --- nz(mod 2)]. At time 0, each particle is given independently a random 
impulse which can take the values (1,0), (0,1), ( - 1 , 0 ) ,  ( 0 , - 1 )  with 
probability 1/4. The particles move uniformly and, whenever they meet, they 
undergo elastic collisions. Dao-Ouang-Tuyen and Szfisz {2) have shown that, 
in this model, the path of an observed particle is approximately a two- 
dimensional Wiener process. Now, according to the hypothesis mentioned 
above, the trajectories of the particles starting out from the points (0, 0) and 
(1, 1) should be asymptotically independent, i.e., ifyo,0(t ) and y l , l ( t )  denote 
their trajectories, then 

(A - l /2yo,o(At),  A - X/2yl , l (As))  ~ (Wx(t), Wz(s)) 

weakly in C2[0, ~ )  x CZ[0, oo), where W l ( t )  and W2(s ) are independent 
two-dimensional Wiener processes with identical covariance matrices 

0) 
39/50 

(the numerical form of Z was incorrectly given in Ref. 2). Unfortunately, 
the method of Ref. 2 does not apply to the joint description of different 
trajectories, since the vector process consisting of two trajectories does not 
possess.the Markov property. 

A P P E N D I X  A. C A L C U L A T I O N  OF T H E  
C O V A R I A N C E  M A T R I X  

Our aim is to calculate the limit of the cross-covariance 

CoV(Z A(t, w) -- E(z  a(t, w)lX), r a(s, u) -- E(r  a(s, u)IY')]~) 

[Note that Cov(~, p[X) = E(~#[X) - E(~[~)E(#[~).] By the independence 
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of the Pi, this covariance is equal to 

a 1 ~, Cov(z{qi +plAt  > w},z{qi +piAs > u +JIA)}[W) 
i<~O 

+ A-1 Z Cov(x{q, +plAt  < w},z{qi +piAs > u +f(A)}tY')  
O<~i~il 

+ A -~  Y~ Cov(z{qi +plAt  < w}, z{qi +pias  < u +f(A)}[2~') (A.1) 
i>i l  

(see Fig. 1). It is easy to see that, if, for the events Ht and H2, H, c H2, then 

Cov(z{H,~}, z{HS}) -- Cov(z{H~}, z{H2} ) -- P(H,)P(HS) 

and 

Domokos Szasz 

Cov(x{H1}, z{H2C}) = Cov(z{H1C}, Z{Hz}) = - P ( H a ) P ( H S )  

Consequently, the sum (A.1) can be written as follows: 

A I ECov(z{qi  +piAt  < w},z{qi +piAs < u +f(A)}[:~') 

- 2 A  -~ ~ Cov(z{qi + p~At < w},z{q~ + p~As < u + f(A)}[~') 
O<i<~il 

(A.2) 

Fig. 1 
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We show how to calculate the limit o f  the second sum. Transform it slightly 

Here 

A 1 Cov(z{qi + p i A t <  w}, z(q~ + Pi As < u + f(A)}[Y') 
O<i<.il 

f~( 
A) 

= A-2 [E(z{q +piAt  < w}, z{q + Pi As < u + f(A)}) 

- EZ{ q + p,At < w}Ez{q + piAs < u +f(A)}Jv(dq) 

f~ 
'(A) 

A - 1  EZ{ q + p i A t <  w}Ez{q +piAs < u +f(A)}v(dq) 

if(A) f f = A-1 z{q + pAt < w} 
do 

• z{q +p'As < u +f(A)}F(dp)F(dp')v(dq) 

A ii2w/t A-1/Xu/s+f(A)/As 

- o~ -oo 

x v(A min{A-1/2w - p t ,  A 1/2u + (As)-~f(A) - p ' s ,  A-~f(A)})  

• F(dplF(dp') 

F r o m  our assumptions it follows that SUpy(1 + [yI-1)[v(y)l < ~ and, if 
l imA-~ YA = Y # O, then limA~ ~ A-lv(AyA) = y. Consequently,  as A ~ Go, 
the last integral tends to 

f -  o~ ~ - ~of~/S min{ - p t '  a - p' s' a} F(dp )F(dp') 

Similarly 

I~ 
(A) 

A - t  Ez{q +plAt  < w}z{q +piAs < u +f(A)}v(dq) 

f_' --~ min{ --pt, a - ps, a}F(dp) 
o0 

For  the first sum in (A.2), the same argument  yields that the limit is 

L = E min{lplt, [a -ps l }z{p(ps  - a) > 0} 

- E min{lplt, fa -p 's l}z{p(p 's  - a) > 0} 

where p and p '  are i.i.d, r andom variables with c o m m o n  distribution F. 
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Thus,  the limit o f  (A.2) is 

L - 2 [ E m i n { t p [ t ,  a - p s ,  a } x { p  < 0} 

- E min{lPlt, a - p ' s ,  a}z{p < O, a - p ' s  > 0}] (a .3)  

It  is worth  observing that  the limit o f  the condi t ional  covariance (A.1) is 
independent  o f  the condi t ion if once P(/2 = const) = 1 has been assumed.  

A P P E N D I X  B. PROOF OF L E M M A  4.1 

Denote  D = { ( w , u ) l w ,  u ~ R ~ , w = u }  and let ~ 2 =  • 2 1 5  
• ~=~ [a j, fij). To  prove  the " i f "  par t  of  the lemma,  we can show that  

P([2) = 0 whenever  [] ~ D -- ;~. The disjointness relation implies that ,  for 
some l, [al,  b~) and [~t, fiz) are disjoint, say l = 1, and a z ~< bl ~< al  ~ fla. 
As usual 

P(]--]) • 2 8G(c1 ,-.., ee,  ~;1 ..... ~e) 

where G denotes the distr ibution function of  (~, q), e = _ 1, and c I = al or b~ 
and 7j = aj or f l j .  Consequent ly ,  we have 

P(t2) = G(bl ,  ill) - G(al, /~1) - G(bl ,  a l )  + G(a l ,  ~1) 

where 

d ( c l ,  ~1) = Y~ ~'6(Cl ..... ce, ~1,-.., ~'e) 
C2, . . . ,C0 ,~2 , . . . ,7e  

and E ' =  _+ 1 depends on c 2 .... , Ce, ~2 . . . . .  7e only. By the condit ion of  the 
lemma,  we can further  write 

P ( [ ] )  = G ( b l ,  b l )  - (~(al, a l )  - G ( b l ,  61) -~ G(Ol,  a l )  = 0 

Hence the " i f "  part ,  while the "on ly  i f "  par t  requires no proof .  
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